Reductions

Reduction: Problem A reduces to Problem B if, given a "black box" (subroutine) for B, one can solve A using a (polynomial) number of calls to the subroutine.

Trivial Example:

- \mathbf{B} is addition $-B(x, y)=x+y$
- A multiplication by 3 .
- A reduces to \mathbf{B} because we can multiply by 3 : $A(z)=B(z, B(z, z))$.

Reductions

Reduction: Problem A reduces to Problem B if, given a "black box" (subroutine) for B, one can solve A using a (polynomial) number of calls to the subroutine.

Trivial Example:

- \mathbf{B} is addition $-B(x, y)=x+y$
- A multiplication by 3.
- A reduces to \mathbf{B} because we can multiply by $3: \quad A(z)=B(z, B(z, z))$.

- A is max flow, B is linear programming
- \mathbf{A} is $1 \| \Sigma C_{j}, \mathbf{B}$ is $1 \| \Sigma w_{j} C_{j}$
- A is $P \| C_{\max }, \mathbf{B}$ is $P|p r e c| \Sigma w_{j} C_{j}$
, Calla

$$
\frac{\operatorname{Max} \text { Flow (} G, \text { cop } u, s, t)}{\text { Write (P }}
$$

$$
\begin{array}{cl}
\max _{\operatorname{sit}} \sum f_{s j} & \\
f_{i j} \leq u_{i j} & \forall(())) \in E \\
\sum_{j \in v} f_{i j}=\mathbb{E} f_{j i} & \forall i<V-\{s, t\} \\
f_{i j} \geqslant 0 & \forall(i))) \in E
\end{array}
$$

Have code for $I \| \Sigma w_{j} C_{j}$

$$
\underbrace{\text { Solve iwhbi }\left(n, w_{1}\right.} \begin{array}{l}
\ldots \\
P_{1} \\
P_{1} \\
\text { output } \\
\text { sole }
\end{array}]
$$

Solve $1 C_{j}\left(n, P_{1} \ldots P_{j}\right)$ Return Solvelw $G_{0}\left(\begin{array}{lll}n & 1, \ldots & 1 \\ p_{1}, \ldots & p_{n}\end{array}\right)$

0	p	w_{j}
1	3	0
2	5	0
1	7	0
y	8	0
5	8	0
0	0	1

if there is a jub that has to cone at end a it hes all the wt. ten obj are the sane

$$
\begin{aligned}
& =w_{1} l_{1}+w_{2} C_{2}+\omega_{3} l_{3}+\omega_{M} \\
& +w_{0} C_{0}=C_{0}
\end{aligned}
$$

scledvle minimizy $P /$ prec|Ewy will pet job 0 as eerty as passible (obsfunc $=C_{0}$)
\Rightarrow finishjobs 1 - s as earty as possible
-) Minne Cmax fer Jobs 1..-s

Sunmand

- Form input for Plpiclingaj sy setty $w=0 \quad \forall$ jabs Qd onewjob O ml $p_{0}=0, w_{g}=$) - Piec constr

- Solve tle P)prec) $\Sigma w_{j} C_{J}$ instan C
- Retuin $C_{0}\left(=C_{\text {max }}\right.$ of instinaty

Reductions for NP-completness

- For technical reasons, We will only consider decision versions of problems.
- e.g. $P \| C_{\max }$; Given m machines, n jobs and a number \mathbf{B}, does the optimal schedule have makespan less than B.
- e.g. Shortest Paths: Given a graph G with weights on the edges, two distinguished vertices s and t and a number \mathbf{B}, is the shortest path from s to t of length less than B.
- The decision version and the optimization version of a problem are "equivalent," that is they each reduce to each other.

Reduction Example

Vertex Cover A vertex cover of a graph $G=(V, E)$ is a set of vertices V^{\prime}, such that for every edge (x, y), at least one of x and y is in V^{\prime}. The vertex cover problem is given a graph G and a number k and asks whether G has a vertex of size at most k.

Clique A clique is a set of vertices such that each pair of vertices has an edge between them. The clique problem is given a graph and a number ℓ and asks when a graph has a clique of size at least ℓ.

Question: Show that vertex cover reduces to clique.

$V C$

$$
\frac{V^{\prime} C}{2}
$$

chare

Given a graph (G, k)

- Form some new graph G^{\prime}
- Find same l
- Solve $C \operatorname{lipre}(G, l)$
- use solutiento cligreto find $\Omega W_{L} C$.

- set of vertices not in UC. have no edges between
- set of vetioses in a cligive hare all edges between 46 m

Reduce UC to cligive
Input (G, k)
Compte $G^{\prime}=$ compdinent of G.
Set $l=|v(G)|-k$
Solive Clque (b^{\prime}, l)
outpet yesho from Clique(ble)

Claim VC redues to cligure

