Reductions

Reduction: Problem A reduces to Problem B if, given a "black box" (subroutine) for B, one can solve A using a (polynomial) number of calls to the subroutine.

Trivial Example:

- B is addition -B(x,y) = x + y
- A multiplication by 3.
- A reduces to B because we can multiply by 3 : A(z) = B(z, B(z, z)).

Reductions

Reduction: Problem A reduces to Problem B if, given a "black box" (subroutine) for B, one can solve A using a (polynomial) number of calls to the subroutine.

Trivial Example:

- B is addition -B(x,y) = x + y
- A multiplication by 3.
- A reduces to B because we can multiply by 3 : A(z) = B(z, B(z, z)).

Multby3(X) Y=X+X Z=Y+X Return 2

More Reduction Examples

1112wy (code fer Have $\mathcal{T}fallw_{\mathcal{I}})$ $\mathcal{S}C_{\mathcal{I}} = \mathcal{S}w_{\mathcal{I}}C_{\mathcal{I}}$ Solve $W_{i}(n, w_{i} - w_{n})$ output soledile Solve ICi (n, P, -- Pj) Return Solvelw, G(n, 1, ..., r) $P_{n} = P_{n}$

PIICmoxo reduces to PIprec Ewi(, if there is a jub W 357800 theat has to come at are the same $= w_{0}(t_{0}) + w_$ $\sum w_j(j)$

scledule minimizer Plprec Early will pet job 0 as early as passible (obstrine - Co) Denty as powerble Minne Cmax for Ids 1-5 Ja 51 52 54)

SUMMGNO, - Form input for Place/Eng by setting with a to the jobs and onew of O M p= Gwz) -Prec constr () () () p)prec) Ewy C - Solve tlè instan@ $C_{0} = C_{mx} of$ $\beta/(C_{mx})$ - Return

Reductions for NP-completness

- For technical reasons, We will only consider decision versions of problems.
- e.g. $P||C_{\max}$; Given *m* machines, *n* jobs and a number B, does the optimal schedule have makespan less than B.
- e.g. Shortest Paths: Given a graph G with weights on the edges, two distinguished vertices s and t and a number B, is the shortest path from s to t of length less than B.
- The decision version and the optimization version of a problem are "equivalent," that is they each reduce to each other.

Reduction Example

Vertex Cover A vertex cover of a graph G=(V,E) is a set of vertices V', such that for every edge (x,y), at least one of x and y is in V'. The vertex cover problem is given a graph G and a number k and asks whether G has a vertex of size at most k.

Clique A clique is a set of vertices such that each pair of vertices has an edge between them. The clique problem is given a graph and a number ℓ and asks when a graph has a clique of size at least ℓ .

Question: Show that vertex cover reduces to clique.

VC relides & Clipk -Chave

Givena graph (F, K) -Form some new graph G' - Find some l - Solve Clipre (6, l) - use solution to clique to frolg V.C.

tot vertices in a clique have all edges between - set of +lem

Reduce UC to clique Input (G, K) Compute G'= compliment of G. Set l=(V(G)) - kSolive Clque(G', L) output yes/no from Chycler

Claim VC reduces to clique